Exercise 51

The cost (in dollars) of producing x units of a certain commodity is $C(x)=5000+10 x+0.05 x^{2}$.
(a) Find the average rate of change of C with respect to x when the production level is changed
(i) from $x=100$ to $x=105$
(ii) from $x=100$ to $x=101$
(b) Find the instantaneous rate of change of C with respect to x when $x=100$. (This is called the marginal cost. Its significance will be explained in Section 3.7.)

Solution

The average rate of change of C with respect to x from $x=100$ to $x=105$ is

$$
\frac{C(105)-C(100)}{105-100}=\frac{\left[5000+10(105)+0.05(105)^{2}\right]-\left[5000+10(100)+0.05(100)^{2}\right]}{5}=20.25 \frac{\text { dollars }}{\text { unit }}
$$

and the average rate of change of C with respect to x from $x=100$ to $x=101$ is

$$
\frac{C(101)-C(100)}{101-100}=\frac{\left[5000+10(101)+0.05(101)^{2}\right]-\left[5000+10(100)+0.05(100)^{2}\right]}{1}=20.05 \frac{\text { dollars }}{\text { unit }}
$$

The instantaneous rate of change of C is the derivative of C.

$$
\begin{aligned}
C^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{C(x+h)-C(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[5000+10(x+h)+0.05(x+h)^{2}\right]-\left[5000+10 x+0.05 x^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[5000+10 x+10 h+0.05\left(x^{2}+2 x h+h^{2}\right)\right]-5000-10 x-0.05 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(5000+10 x+10 h+0.05 x^{2}+0.1 x h+0.05 h^{2}\right)-5000-10 x-0.05 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 h+0.1 x h+0.05 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(10+0.1 x+0.05 h) \\
& =10+0.1 x
\end{aligned}
$$

Therefore, the instantaneous rate of change of C with respect to x when $x=100$ is

$$
C^{\prime}(100)=10+0.1(100)=20 \frac{\text { dollars }}{\text { unit }} .
$$

